skip to main content
Lingue:

Impact of socioeconomic inequalities on geographic disparities in cancer incidence: comparison of methods for spatial disease mapping

Goungounga, Juste Aristide ; Gaudart, Jean ; Colonna, Marc ; Giorgi, Roch

BMC medical research methodology, 12 October 2016, Vol.16(1), pp.136 [Rivista Peer Reviewed]

Fulltext disponibile

Citazioni Citato da
  • Titolo:
    Impact of socioeconomic inequalities on geographic disparities in cancer incidence: comparison of methods for spatial disease mapping
  • Autore: Goungounga, Juste Aristide ; Gaudart, Jean ; Colonna, Marc ; Giorgi, Roch
  • Note di contenuto: The reliability of spatial statistics is often put into question because real spatial variations may not be found, especially in heterogeneous areas. Our objective was to compare empirically different cluster detection methods. We assessed their ability to find spatial clusters of cancer cases and evaluated the impact of the socioeconomic status (e.g., the Townsend index) on cancer incidence. Moran's I, the empirical Bayes index (EBI), and Potthoff-Whittinghill test were used to investigate the general clustering. The local cluster detection methods were: i) the spatial oblique decision tree (SpODT); ii) the spatial scan statistic of Kulldorff (SaTScan); and, iii) the hierarchical Bayesian spatial modeling (HBSM) in a univariate and multivariate setting. These methods were used with and without introducing the Townsend index of socioeconomic deprivation known to be related to the distribution of cancer incidence. Incidence data stemmed from the Cancer Registry of Isère and were limited to prostate, lung, colon-rectum, and bladder cancers diagnosed between 1999 and 2007 in men only. The study found a spatial heterogeneity (p 1.2). The multivariate HBSM found a spatial correlation between lung and bladder cancers (r = 0.6). In spatial analysis of cancer incidence, SpODT and HBSM may be used not only for cluster detection but also for searching for confounding or etiological factors in small areas. Moreover, the multivariate HBSM offers a flexible and meaningful modeling of spatial variations; it shows plausible previously unknown associations between various cancers.
  • Fa parte di: BMC medical research methodology, 12 October 2016, Vol.16(1), pp.136
  • Soggetti: Cancer ; Cluster Detection ; Oblique Decision Tree ; Spatial Analysis ; Health Status Disparities ; Socioeconomic Factors ; Healthcare Disparities -- Statistics & Numerical Data ; Neoplasms -- Epidemiology
  • Lingua: Inglese
  • Tipo: Articolo
  • Identificativo: E-ISSN: 1471-2288 ; PMID: 27729017 Version:1
  • Fonte: MEDLINE/PubMed (U.S. National Library of Medicine)

Ricerca in corso nelle risorse remote ...